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Introduction

MRI techniques provide a non-invasive method for the highly accurate anatomic depiction
of the heart and vessels. In addition, the intrinsic sensitivity of MRI to flow, motion and
diffusion offers the possibility to acquire spatially registered functional information
simultaneously with the morphological data within a single experiment [1-13, 16-19, 31,
36, 38]. Characterizations of the dynamic components of blood flow and cardiovascular
function provide insight into normal and pathological physiology and have made
considerable progress in recent years [14-15, 24, 26-29, 35, 55].

M,y - signal magnitude

¢ - signal phase

Theory - Velocity Encoding

Most MR-sequences demonstrate more or
less significant sensitivity to flow and
motion, which can lead to artifacts in many
applications.  The  intrinsic  motion
sensitivity of MRI can, however, also be

Fig. 1: Longitudinal (M) and transverse (M,,) spin

used to image vessels like in phase contrast
MR-angiography but also to quantify blood
flow and motion of tissue. Based on the
fact, that the local spin magnetization is a
vector quantity, in addition to magnitude
data phase images can be extracted from

magnetization in blood or tissue. Magnitude and
phase images can be derived from the length and
orientation of the transverse magnetization. In
combination with appropriate encoding gradients,
phase images are motion sensitive and can be used to
directly measure the local velocities of moving spins
on a pixel-to-pixel basis.

the measured MR signal. Using appropriate

velocity encoding gradients flow or motion dependant phase effects can be used to measure
two datasets with different velocity dependant signal phase at otherwise identical
acquisition parameters. Subtraction of the two resulting phase images allows the
quantitative assessment of the velocities of the underlying flow or motion [18].

The phase dependency of the MR-Signal to moving spins can be derived from the
precession frequency of spins in local magnetic fields. The Larmor frequency @, of spins
at the spatial location 7 in a static magnetic field By, local field inhomogeneity ABo, and an
added magnetic field gradient G is given by:
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After signal reception the acquired FID is demodulated with respect to the Larmor
frequency ®, , in the static magnetic field Bo. This corresponds to a transformation of the
MR-Signal into a rotating reference frame such that the main field contribution to the signal
frequency can be omitted for further calculations. Integration of equation (1) results in the
phase of the precessing magnetization and thus the phase of the measured MR signal after
an excitation pulse (at 7,) at echo time 7E:

$(FTE) = (7 ty) = [0, (F.0)dt = yAB,(TE —1,) + y [ G(O)F(0)dr. (2

ty fo

which can be expanded in the following Taylor series:
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with 7" being the n™ derivative of the time dependant spin position and ¢, the
corresponding n'™ order phase. Initial signal phase and field inhomogeneities result in an
additional background phase ¢,. If the motion of the tissue under investigation does not
change fast with respect to the temporal resolution of data acquisition the corresponding
velocities can be approximated to be constant during data acquisition, i.e. echo time 7E.
Thus 7(#) can be introduced as first order displacement r(¢)=r, +v(t—¢,)+... with a
constant velocity v = (v, (7,),v, (7,),v.(7,)) . Equation (3) then simplifies to
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including an unknown background phase ¢, and zero and first order components which
describe the influence of magnetic field gradients on phase components of static spins at 7,
and moving spins with velocities v, respectively. The integrals describing the contribution
of the magnetic field gradients are also known as n™ order gradient moments M, such that
the first gradient moment M, determines the velocity induced signal phase for the constant
velocity approximation. As a result, appropriate control of the first gradient moment can be
used to specifically encode spin flow or motion.

Velocity encoding is usually performed using bipolar gradients as depicted in figure 2,
which, according to equation (4), result in zero M, and thus do not lead to any phase
encoding of stationary spins. Moving spins, however, will experience a linear velocity
dependant phase change, which is proportional to the amplitude and timing of the gradient.
According to equation (4) velocity induced phase shifts can be controlled by adjusting the



first gradient moment M, by varying total
bipolar gradient duration 7 and/or gradient
strength G and are given by (simplified
gradient design without ramps):

() =-My=yG(T/2)’v  (5)
However, background phase effects ¢, due
to susceptibility of field inhomogeneity can
not be refocused using bipolar gradients.

To filter out such phase effects, two
measurements with different first moments
MY and M® (e.g. inverted gradient
polarities) are thus necessary to isolate the
velocity encoded phase shifts and encode
flow or motion along a single direction.
Subtraction of phase images from such two
measurement results in phase differences
A¢ which are directly proportional to the
underlying velocities v and difference in
first gradient moments AM = Ml(l) - M](z)‘
Since  Fourier image reconstruction
resolves signal amplitudes and phases as a
function of spatial locations, the encoded
velocities can simply be derived from the
data by dividing the pixel intensities in the
calculated phase difference images by yYAM
(figures 2 and 3).

Note that only velocity components v along
the direction of the bipolar gradient
contribute to the phase of the MR-signal
such that only a single velocity direction
can be encoded with an individual
measurement. As a result, at least four
independent measurements with different
arrangements of bipolar gradients have to
be performed to gain velocity data with
isotropic three-directional flow sensitivity.
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Fig. 2: Bipolar gradients with opposite polarity result
in different first moments Ml(') and Ml(z). Phase
difference calculation eliminates the background
phase and permits quantitative assessment flow or
motion. Velocity aliasing occurs if the underlying
motion exceeds venc.
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Fig. 3: Top: Gradient echo pulse sequences for one-
directional velocity encoding along the slice direction
using bipolar gradients with opposite polarity.
Bottom: Resulting through plane measurement of
blood flow in the ascending (AAo) and descending
(DAo) aorta. (Grey-scaled flow images = systolic
blood flow velocities normal to the image plane. Note
the enhanced velocity noise in regions of low SNR
(lungs) in the magnitude images.

For the design of an actual phase contrast MR measurement, some prior knowledge of the
order of the maximum velocities is required. For too high velocities, the velocity dependant

phase shift can

exceed +/-mand phase

aliasing occurs. Velocity sensitivity

(venc = /yAM ), is thus defined as the velocity that produces a phase shift Ag of « radians
and is determined by the difference of the first gradient moments used for velocity
encoding. Consequently the highest velocity, which is expected, has to be used to define the
velocity encoding (venc-factor) in order to avoid unintentional phase wrapping [45].



As for all MR imaging techniques, phase contrast velocity images suffer from noise that
can lead to errors in the acquired velocities. It can be shown that the noise in the velocity
encoded images, defined as the standard deviation o4 of the phase differences in a
homogenous region with no flow or motion, is inversely related to the signal-to-noise ratio
(SNR) in the corresponding magnitude images (G4 ~ 1/SNR) [36, 46]. Noise in the velocities
derived from the phase difference data can therefore be estimated by

o = Q venc ' ()
7 SNR

For a given SNR the velocity noise is thus determined by the user selected velocity
sensitivity (venc), resulting in a trade-off between the minimum detectable velocity
sensitivity needed to avoid aliasing. For optimal noise performance the venc should
therefore always be selected as small as possible.

Methods & Implementation

Several velocity encoding strategies exist and have been reported in the literature and
include TE or gradient moment optimized implementations [18, 20-21].

A possible alternative is provided by so called flow compensation techniques which permit
the acquisition of a reference scan with vanishing zero and first gradient moments (all
velocity induced phase shifts are refocused at echo time TE). Velocity encoding is then
performed by a second scan with added bipolar gradients but otherwise identical parameters
(figure 4). As a result, the reference scan generates background phase images only (M;" =
0), while the second flow sensitive scan is used to define velocity sensitivity
(venc =/ yAM®). An advantage over other methods is related to reduced pulsatile flow
artifacts in the reference images. However, in comparison to standard pulse sequences
additional gradients are necessary and lead
to increased echo and repetition time.

Flow Compensation Flow Encoding, Bipolar Gradient

M, =0 e M, =0

M, =0 M, = G(TI2)2
The first order approximation (constant t
velocities) is only valid if velocities do not
change significantly with respect to the
temporal resolution (i.e. TE) of the pulse
sequence [58, 62, 74]. To ensure that the
velocities of moving spins can be assumed
to be constant while data corresponding to a
certain time frame is received, the most
widely used techniques for phase contrast
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data acquisition are therefore based on fast
rf-spoiled gradient echo based sequences.
In order to enhance scan efficiency, flow
compensation and encoding gradients are
usually integrated into the imaging
gradients (see also figure 5).

Fig. 4: Schematic illustration of velocity encoding for
phase contrast MRI. Application of a bipolar gradient
(right) results in an MR-signal phase directly
proportional to the local flow or object motion, while
static tissue is fully refocused. Subtraction form a
reference scan with flow compensation eliminates
background effects and permits direct quantification
of flow and tissue motion.



To  synchronize contrast
measurements with periodic tissue
motion or pulsatile flow, data
acquisition 1is typically gated to the
cardiac cycle and time resolved (CINE)
anatomical images are collected to
depict the dynamics of tissue motion
and blood flow during the cardiac cycle
[19, 25-29, 33, 39, 50, 55, 70].

For phase contrast velocity mapping,
bipolar gradients have to be introduced
at appropriate positions and successive
acquisitions have to be performed for
reference scan and up to three motion
sensitized acquisitions to derive one- to
three-directional velocity fields from
the data. To minimize artifacts in phase
difference images related to subject
motion, interleaved velocity encoding is
often performed, for which the different
flow encodes are kept as close together
as possible in time (see figure 5).

phase

Flow Quantification & Visualization

Visualization and quantification of
blood flow and tissue motion using
phase contrast (PC) MRI has been
widely used in a number of
applications. In addition to analyzing
tissue motion such as left ventricular
function [24, 35, 43, 51, 54, 66, 68],
time-resolved 2D and 3D PC MRI have
proven to be useful tools for the
assessment of blood flow within the
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Fig. 5: Example of ECG gated k-space segmented CINE
phase contrast MRI for three-directional velocity
encoding. For each k-space line a flow compensated
reference scan and three motion sensitive scan (added
bipolar gradients) are acquired in an interleaved manner.
The temporal resolution and total scan time can be
flexibly adjusted by the number of velocity sensitive
acquisitions and k-space segments.
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Fig. 6: Blood flow quantification in an axial slice above
the aortic valve (bottom left) using through plane velocity
encoding. Segmentation of vascular boundaries permits
the calculation of mean, max and min blood flow
velocities (lower right) to calculate average and peak flow
rates. Visualization of systolic through plane flow profiles
(top right) provide detailed insight into the temporal
evolution of blood flow velocities.

cardiovascular system [26-30, 32, 34, 44, 50, 52, 55, 56-57, 67, 70, 72].

Traditionally, MRI imaging of flow is accomplished using methods that resolve two spatial
dimensions (2D) in individual slices. In combination with one-directional encoding of
through plane velocities such methods are typically used for blood flow quantification in
the heart and great vessels. Applications include the assessment of left ventricular
performance (e.g. cardiac output), regurgitation volumes in case of valve insufficiency, or
evaluation of flow acceleration in stenotic regions (e.g. aortic valve stenosis). Data analysis
is typically based on semi-automatic segmentation of the vascular lumen of interest and
calculation of time-resolved blood flow from mean flow velocities and vascular cross

sectional area (figure 6).



Three-directional PC-MRI data 3D Blood Flow Visualization

Alternatively, 3D spatial encoding offers
the possibility of isotropic high spatial
resolution and thus the ability to measure
and visualize the temporal evolution of
complex flow and motion patterns in a 3D-
volume [27, 48, 60, 65, 68, 80]. Several
groups have reported advances in the
application of time-resolved 3D-CINE-PC
MRI, which has the advantage of imaging

blood flow with complete spatial and Fig. 7: Left: Magnitude (Mag) and velocity data
temporal coverage of the volume of fom 3D CINE PC-MRI in a single sagital oblique
interest. Recently reported applications slice during systole. Each velocity image represents a
include analysis of blood flow through Cartesian velocity component (gray-scale = velocity
artificial valves [60], ventricular flow magnitude). Right: Blood flow visualization using

blood fl h . 3D stream-lines in the thoracic aorta. The individual
patterns [48, 57], blood flow characteristics lines represent traces along the velocity vector field in

in the thoracic aorta [27, 80] and relative  a systolic time frame (color = velocity magnitude).
pressure mapping within the cardiovascular
system [59, 61, 79].

Due to the acquisition of at least four data sets for three-directional velocity encoding,
phase contrast MRI inherits a trade-off between spatial/temporal resolution and total scan
time. For thoracic and abdominal applications respiration control (e.g. breath-holding for
single-slice 2D measurements or respiratory gating for 3D methods) can therefore ber
necessary in order to avoid breathing artifacts.

Phase contrast MRI has been extensively validated in phantom and in-vivo studies and has
proven to be a reliable tool for the quantitative and qualitative analysis of blood flow and
tissue motion [13, 22, 25, 29, 33, 39-42, 52, 56].

However, several effects can introduce imperfection in PC-MRI, which cause errors in
velocity measurements by affecting the first moments used to encode flow or motion. Three
major sources of inaccuracy in velocity encoded images include eddy current effects,
Maxwell terms, and gradient field distortions [30, 53, 64, 74].

For phase contrast MRI, the different gradient waveforms that are used for the subsequent
velocity encodes lead to different eddy current induced phase changes in the individual
phase images. As a result, subtraction of phase images does not eliminate errors related to
eddy currents and additional data processing is needed to restore the original velocity
encoded signal phase. Several correction strategies have been proposed and are typically
based on the subtraction of estimation of the spatially varying eddy current induced phases
changes as estimated from static tissue. Compensation for Maxwell terms (sometimes
referred to as concomitant gradient terms) and for gradient field non-linearities can be
performed during image reconstruction, based on the knowledge of the gradient waveforms
(Maxwell terms) and a gradient field model (gradient field non-linearities).

Additional sources of error as a result of complex flow and inadequate timing of the flow
encoding include acceleration effect and spatial displacement [58, 62, 76].



Summary and Discussion

MRI provides a non-invasive method for the accurate anatomic characterization of the heart
and great vessels in 3D. In addition, the intrinsic sensitivity of MRI to flow and motion
offers the possibility to acquire spatially registered functional information simultaneously
with the morphological data within a single phase contrast experiment.

A disadvantage of phase contrast MRI is related to the need for multiple acquisitions for
encoding a single velocity direction, resulting in long scan times. New methods based on
the combination of phase contrast MRI and fast sampling strategies such as spiral or radial
imaging or other imaging strategies such as balanced SSFP have been reported and are
promising for further reduction in total scan time and/or increased spatial or temporal
resolution [37, 63, 71].

In addition, the total acquisition time or temporal and spatial resolution associated with a
specific MR technique may be further improved by using parallel imaging and/or partial k-
space update methods (view sharing) [77, 78, 81].

MR velocity mapping has great potential to benefit from imaging at higher field strength.
Recently reported results indicate a considerable gain in SNR [73], which is directly
translated in reduced noise in the velocity encoded images and may also be used to increase
spatial and/or temporal resolution.

For the analysis and visualization of complex, three-directional blood flow within a 3D
volume, various visualization tools, including 2D vector-fields and 3D streamlines and
particle traces, have been reported [23, 48, 65, 80]. In addition more advanced data
quantification of directly measured (e.g. flow rates) and derived parameters (e.g. pressure
difference maps, wall sheer stress, etc.) are promising for the evaluation of new clinical
markers for the characterization of cardiovascular disease [59,61, 76, 79].
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